Jump to content

Decoupling stress and corrosion to predict metal failure - General Hangout & Discussions - InviteHawk - Your Only Source for Free Torrent Invites

Buy, Sell, Trade or Find Free Torrent Invites for Private Torrent Trackers Such As redacted, blutopia, losslessclub, femdomcult, filelist, Chdbits, Uhdbits, empornium, iptorrents, hdbits, gazellegames, animebytes, privatehd, myspleen, torrentleech, morethantv, bibliotik, alpharatio, blady, passthepopcorn, brokenstones, pornbay, cgpeers, cinemageddon, broadcasthenet, learnbits, torrentseeds, beyondhd, cinemaz, u2.dmhy, Karagarga, PTerclub, Nyaa.si, Polishtracker etc.

Decoupling stress and corrosion to predict metal failure


Nergal
 Share

Recommended Posts

 

An Arizona State University research team has released new insights about intergranular stress-corrosion cracking (SCC), an environmental cause of premature failure in engineered structures, including bridges, aircraft and nuclear power generating plants.

The research, Decoupling the role of stress and corrosion in the intergranular cracking of noble alloys, released today in Nature Materials, addresses the assumption that intergranular SCC is the result of the simultaneous presence of a tensile stress and corrosion, and demonstrates that the roles of stress and corrosion can be decoupled, or can act independently.

"The finding is the culmination of about 30 years' work on this kind of stress corrosion problem," said lead researcher Karl Sieradzki, a professor of materials science and engineering at ASU. "We now have a view into how new alloys can be designed to avoid this form of stress corrosion-induced failure."

When metals are exposed to water containing salts, the strength of the metal can be severely compromised and lead to unexpected failure. An example of a SCC failure is the 2003 Kinder Morgan gasoline pipeline in Tucson, AZ.

The conventional paradigm for understanding SCC conditions is the simultaneous presence of a sufficient level of tensile stress, a corrosive environment and a susceptible material.

The research challenges this viewpoint and illustrates that the simultaneous presence of stress and a corrosive environment is not a requirement for SCC, and that it can occur if the corrosion happens first and the material is subsequently subjected to stress.

In addition to Sieradzki, the paper's authors include Nilesh Badwe, Xiying Chen, Erin Karasz, and Ariana Tse from ASU and Daniel Schreiber, Matthew Olszta, Nicole Overman and Stephen Bruemmer from Pacific Northwest National Laboratory. The research was supported by the U.S. Department of Energy.
Link to comment
Share on other sites

Guest
This topic is now closed to further replies.
  • Customer Reviews

  • Similar Topics

×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.